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What are we covering here:

Outline

❖ Intro
❖ Statistical and Systematic uncertainties
❖ Modeling your errors
❖ Typical systematics uncertainties
❖ Estimating systematics
❖ Propagating your errors
❖ Model comparison and error reporting
❖ Outro
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What are we covering here:

Disclaimer: a lot of this talk in based on 
previous classes done by Dr. Cheryl Patrick 
and Dr. Ben Messerly. I’m also mostly using 
MINERvA results as examples for historical 
reasons (and the fact it's a xsec measurement 
dedicated experiment). 
Thank you all for the collaboration.

Outline

❖ Intro
❖ Statistical and Systematic uncertainties
❖ Modeling your errors
❖ Typical systematics uncertainties
❖ Estimating systematics
❖ Propagating your errors
❖ Model comparison and error reporting
❖ Outro



Introduction
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Do we need errors?

❖ Yes.

❖ Experimental Measurements are basically worthless without errors. 

❖ Neutrino Interaction measurements main use is to validated models that describe the data 
better, and reducing other neutrino experiments systematic errors. 
➢ When we talk about uncertainties this circular arguments often show up.  

Introduction
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Statistics Statistics Statistics

❖ Statistics is hard and complex.

❖ it's unfortunate that most of us don't have a solid base of probability and statistics and it's also 
impossible for me to give you that base just today (both because of competency and time).

❖ We use modern and sometimes specific techniques, textbooks may or may not be your friends 
here. 
➢ Backup slides with some literature references

Introduction
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❖ Central Value (CV) is the “best guess” 
measurement.

❖ Statistical or systematic uncertainty 
depicted by inner bar.

❖ Total uncertainty depicted by outer bar.

❖ Uncertainty on model shown 
sometimes

❖ “Uncertainty” and “error” often used 
interchangeably.

Some quick terms

Introduction



Statistical and 
Systematic 
uncertainties
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❖ A “statistical uncertainty” represents the scatter in a parameter estimation caused by 
fluctuations in the values of random variables. Typically this decreases in proportion to 1/√N.

❖ A "systematic uncertainty" any error that's not a statistical error. More clearly, a systematic 
uncertainty is a possible unknown variation in a measurement, or in a quantity derived from a 
set of measurements, that does not randomly vary from data point to data point.”

❖ DO NOT TAKE THESE DEFINITIONS TOO SERIOUSLY. Not all statistical uncertainties 
decrease like 1/√N. And more commonly, taking more data can decrease a systematic 
uncertainty as well, especially when the systematic affects different parts of the data in 
different ways.

Statistical vs Systematic

Statistical and Systematic uncertainties
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From bias to uncertainty

❖ Precision and Accuracy:
➢ Precision is a description of random 

errors, a measure of statistical 
variability.

➢ Accuracy describes systematic 
errors, that is, differences between 
the true and the measured value 
that are not probabilistic (or: bias).

❖ In particle physics, precision can be 
increased by accumulating more data
➢ Equivalent to repeating the 

measurement

Statistical and Systematic uncertainties
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❖ Let us consider a toy setup:

➢ One repeating dart machine aimed 
at the center of a target.

➢ 4 example datasets:
■ A
■ B
■ C
■ D

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy

From bias to uncertainty

Statistical and Systematic uncertainties
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ Let us consider a toy setup:

➢ One repeating dart machine aimed 
at the center of a target.

➢ 4 example datasets:
■ A
■ B
■ C
■ D

❖ Can we infer the precision and accuracy in 
each case?

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ 4 example datasets:
➢ A: low precision 
➢ B: low precision 
➢ C: high precision 
➢ D: high precision 

❖ C and D have low statistical fluctuation 
when several throws are made.

❖ A and B have a greater dispersion, or a 
big statistical fluctuation.

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy

Low accuracy
Low precision

A

High accuracy
Low precision

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ 4 example datasets:
➢ A: low accuracy
➢ B: high accuracy
➢ C: high accuracy
➢ D: high accuracy 

❖ B and D, since we are aiming at the center 
they are the ones getting it closer, with no 
apparent systematic bias.

❖ A and C miss the target by way more, 
there's some consistent error in the 
throws, or a systematic bias.

Low accuracy
Low precision

A

High accuracy
Low precision

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ 4 example datasets:
➢ A: low precision - low accuracy
➢ B: low precision - high accuracy
➢ C: high precision - high accuracy
➢ D: high precision - high accuracy

❖ Here one could just fix the machine to 
remove bias.

❖ Let's make this analogy more realistic.

Low accuracy
Low precision

A

High accuracy
Low precision

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ Consider now the machine is aimed and 
you have no access to any of the setup.
 

❖ You have the target dataset, where is the 
machine aimed at and how much can 
we trust this measurement? 

Low accuracy
Low precision

A

High accuracy
Low precision

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ The statistical uncertainty come from the 
amount of throws. 

❖ Each new throw reduces the statistical 
uncertainty and increases your 
confidence in the central value as an 
average of all the positions. 

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ Where do the systematic bias comes from 
tho? 
➢ You! Or rather from the conditions 

where that data was taken. 

❖ You put the target here because you 
thought it was centralized, how are you 
measuring the distance in between the 
throws? Is there something in the 
environment pushing darts to one side? 
Maybe something in the way?

❖ It's hard to know, and we are focusing on 
quantifying the uncertainty, not fixing it.

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ What if you use all the knowledge you 
have of the machine and make a 
simulation? 

❖ You can now compare your best guess 
with the actual data. 
➢ But, even if the overlap perfectly, 

you still need to quantify how much 
you can trust your simulation.

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ Then make another simulation with 
something in the way and see how that 
affect the CV you had in the first try. Make 
another simulation considering you are the 
worst at measuring the position, another 
where… test all the assumptions you 
made in the first place.

❖ You can compare these changes to the CV 
and quantify how much you are sure of 
that CV. 

❖ That's your systematic error in that 
measurement. 

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy
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From bias to uncertainty

Statistical and Systematic uncertainties

❖ Of course, this is a simplified case. None 
of these errors exist in a vacuum so you 
need to propagate them, some of our 
assumptions are based on physics models 
that we are also not fully sure of…

❖ In HEP data analysis >90% of the work is 
about thinking of clever ways to reduce or 
at least measure (and validate) 
systematics.

Low precision
Low accuracy

A

Low precision
High accuracy

B

C
High precision
Low accuracy

D
High precision
High accuracy



Modeling 
your error
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Probability distributions

Modeling your error

❖ Measurement uncertainties are often the 
sum of many independent contributions. 
We need a probability density function 
(PDF) to better quantify the underline 
probability.

❖ Central limit theorem:
➢ When independent random 

variables are added, their properly 
normalized sum tends toward a 
normal distribution even if the 
original variables themselves are 
not normally distributed.
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NORMAL DISTRIBUTION (GAUSSIAN)

❖ A Gaussian distribution is given by:
➢ where 

■ µ - average value
■ σ - standard deviation of x

➢ If µ = 0 and σ = 1, a Gaussian 
distribution is also called standard 
normal distribution. 

❖ Probability values corresponding to 
intervals [µ − nσ, µ + nσ] for a Gaussian 
distribution are frequently used as 
reference. 

Modeling your error
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NORMAL DISTRIBUTION (GAUSSIAN)

❖ Usually counting experiments 
(histograms!) are not described by 
Gaussian distributions but rather Poisson 
distributions.

❖ But for large counts, a Gaussian is a good 
approximation of a Poisson distribution.

Modeling your error



(some) 
Typical systematics 
uncertainties
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Low level / detector calibration

(some) Typical systematics uncertainties

❖ What's the cross talk on your photomultiplier?

❖ Which wires received the signal?

❖ How accurate is the timing?

❖ What's the alignment of the detector?
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Event Reconstruction

❖ How accurately can we know the track 
angle?
 

❖ How well do we know the energy scale?
 

❖ What's the accuracy on the track position 
measured?

❖ Does the event have an overlapping 
cosmic ray?

(some) Typical systematics uncertainties
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Model Uncertainties

(some) Typical systematics uncertainties

❖ There are many uncertainties in the models in our GENIE simulation
➢ Primary interaction rate uncertainties
➢ Final-state interaction rate uncertainties

❖ GENIE’s parameter values and their uncertainties come from the results of previous 
experiments.

❖ GENIE sort of has you covered.
➢ Uncertainties that GENIE doesn’t consider might affect your analysis.
➢ GENIE’s uncertainty estimates might be not great. 
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❖ (some) Main uncertainties considered:
➢ Beamline geometry

■ Proton beam steering, size 
■ Magnetic horn positions, current
■ Target position

➢ Physics processes
■ Probability of proton re-interacting in target
■ Constrained by external data

Flux Uncertainties

(some) Typical systematics uncertainties

Fermilab's NuMI Beam



Estimating 
systematics
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How they affect the measurement?

Estimating systematics

❖ One-by-one we can determine how some uncertainty in the measurement process can leads to 
a small change.

❖ But how will these uncertainties affect our cross section?
➢ Increasing the muon energy scale by 10% changes the reconstructed muon energy from 

1GeV to 1.1GeV.
➢ Shifting the vertex position by a distance between 1 and 10 cm might move the event in 

or out of the volume we’re studying.
➢ Increasing pion production rate by 20% makes it any events with a pion 1.2 times as 

likely.
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Alternate Universes

❖ Following the dart machine example:

➢ 1. Make a best guess simulation, 
that's you Central Valeu (CV).

Estimating systematics
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Alternate Universes

❖ Following the dart machine example:

➢ 1. Make a best guess simulation, 
that's you Central Valeu (CV).

➢ 2. Run the same simulation with a 
single parameter shifted by some 
amount (or best estimate of the 1σ 
uncertainty on that parameter).

Estimating systematics
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Alternate Universes

❖ In jargon, the 2nd simulation shows the CV 
in an “alternate universe” where, for 
example, pions are more likely to interact, 
or we measured all our vertex positions 
10cm to the right.

❖ The difference between the distributions 
gives a measure of the uncertainty due to 
this parameter.

Estimating systematics
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Alternate Universes

❖ We can actually keep trying new shifts of 
the same parameter.

❖ In this case, the uncertainty is the average 
of the differences between each universe 
and the central value.

❖ E.g.:
|N1 - NCV| = |7-6| = 1
|N2 - NCV| = |4-6| = 2

Uncertainty is average: (1+2)/2 = 1.5
Fractional uncertainty = 1.5/6 = 25%

Estimating systematics
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(many) Alternate Universes

Estimating systematics

❖ We can actually keep trying new shifts of 
the same parameter.

❖ In this case, the uncertainty is the average 
of the differences between each universe 
and the central value.

❖ E.g.:
|N1 - NCV| = |7-6| = 1
|N2 - NCV| = |4-6| = 2

Uncertainty is average: (1+2)/2 = 1.5
Fractional uncertainty = 1.5/6 = 25%
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(many) Alternate Universes

❖ There are generally 3 ways to make this 
variations:
➢ Smearing and scaling of 

observables
➢ Reweight techniques
➢ Alternative simulations

❖ We study the most efficient way to make 
the variations and evaluate all systematic 
sources we consider. 

Estimating systematics

Shifting the position of an event vertex 
in the detector will affect which events 
are in the detector’s fiducial volume

Reweighting the probability that a 
CCQE event can occur will change 
the event count 

Producing a whole new simulation 
sample with detector parameters 
shifted can affect the sample in many 
ways



Propagating 
errors
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Errors in the Cross Section calculation

❖ Finally we are talking about xsections!

❖ If you managed to quantify your errors we 
should be ready to carefully consider them 
in the cross section calculation.

❖ Which terms have which kind of 
uncertainty?

Propagating errors
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Selected Events

❖ Event selection
➢ Selected data events – only have 

statistical uncertainty bars.
➢ Selected MC events –statistical and 

systematic uncertainty bars.

❖ Background prediction
➢ There is no data background 

prediction!
➢ MC has stat and syst uncertainties 

(not shown here).

Propagating errors
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Background subtraction

❖ This is the first place where you combine 
data and MC. 
➢ X = A - B 
➢ If A has error sources that B. 

doesn’t have, X still inherits A’s 
error sources. 

❖ Data now has stat and syst errors.

Propagating errors
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Unfolding, efficiency, etc

❖ Next calculation steps follow the same 
idea, considering the errors.

❖ Your data now include the errors related to 
our use of imperfect simulation.

Propagating errors



Un
de

rs
ta

nd
in

g 
Sy

st
em

at
ic

 e
rr

or
s 

   
  M

at
eu

s 
F.

 C
ar

ne
iro

44

Are we done yet?

Propagating errors

❖ No! We only talked about how do estimate the systematic uncertainties. 

❖ There's a lot of work on trying to minimize and evaluate the uncertainties 
➢ E.g.: If the main source of a large uncertainty is known, the comparison can be reversed 

and, instead, a calibration can be obtained.
➢ E.g.2: working on specific optimizations of your reconstruction (including the 

background channels) can reduce the errors.
➢ ...



Model 
comparison 
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Model comparison

❖ Using the total uncertainty on the data 
allow us to compare it with simulated 
results. 

❖ We can evaluate the regions where 
models describe well the data, and where 
they don't.

Model comparison 
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Model comparison

❖ Using the total uncertainty on the data 
allow us to compare it with simulated 
results. 

❖ We can evaluate the regions where 
models describe well the data, and where 
they don't.

Model comparison 
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Covariance Matrix

❖ Although we already have the total 
uncertainty in each bin, we need to 
consider that different bins may be 
correlated.

❖ The covariance matrix is an N × N matrix, 
where N is the total number of bins in our 
measured distribution
➢ Positive correlation

■ Universe shifts them in the 
same direction from the CV

➢ Negative correlation
■ Universe shifts them in 

opposite directions from the 
CV

Model comparison 
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Goodness of fit

❖ There are many techniques to evaluate 
how good a model is, xsec experimental 
results often use chi-squared, 
where:
➢ N is the number of bins
➢ Mij

-1 is the [i,j] matrix element of the 
inverse covariance matrix

➢ xi is the value of the ith bin of the 
quantity that the matrix was made 
from

➢ yi is the value of the ith bin of the 
model against which we are 
comparing

Model comparison 
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❖ Hopefully it is somewhat clear that measurements need errors, and that those errors are 
intrinsic to the specific combination that was used to analyse the data 

❖ Always make as much information publicly available as you can! 
➢ Variations used to evaluate errors
➢ Values of unique errors
➢ Covariance and Correlation matrices

❖ Always consider that someone in the future may way to re-evaluate your data and making that 
as easy as possible should be a priority. 

Reporting results

Model comparison 



Outro
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We've gone through a lot!

Outro

❖ We went through the concept of stat vs syst errors, a bit of pdf's, we saw commons sources of 
systematics, learned how to estimate them, propagate the errors, used all of the information to 
compare data and monte carlo, and finally published it!

❖ This is not all, several of these steps can be done differently. But this talk should be enough for 
you to start considering errors in your first analysis. 

❖ Uncertainties are unavoidable and they will be a big part of the job. It's complicated so don't 
feel bad if things are not quite clear yet. Trust me, even experts stumble with these concepts all 
the time. Don't be shy and ask for help!
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We've gone through a lot!

Outro

❖ We went through the concept of stat vs syst errors, a bit of pdf's, we saw commons sources of 
systematics, learned how to estimate them, propagate the errors, used all of the information to 
compare data and monte carlo, and finally published it!

❖ This is not all, several of these steps can be done differently. But this talk should be enough for 
you to start considering errors in your first analysis. 

❖ Uncertainties are unavoidable and they will be a big part of the job. It's complicated so don't 
feel bad if things are not quite clear yet. Trust me, even experts stumble with these concepts all 
the time. Don't be shy and ask for help!

Thank you!
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Statistics references

Backup

from  Simon Connell at ASP2016 : Stats for HEP
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E.g.: x = 2.340 ± 0.050 (stat.) ± 0.025 (syst.)

❖ Statistical or random uncertainties
➢ can be reliably estimated by repeating measurements
➢ follow a known distribution (e.g.. Poisson or a Gaussian) that can be measured by 

repetition
➢ Relative uncertainty reduces as 1/√n where n is the sample size
➢ Main HEP use case: Expect 𝛌 events in a search region, and observe n. The 

measurement error on 𝛌 is √n.

❖ Systematic uncertainties
➢ Cannot be calculated solely from ‘sampling’ fluctuations (=repeated measurements)
➢ In most cases don't reduce as 1/√n (but often also become smaller with larger n 

because more data allows better auxiliary measurements)
➢ Difficult to determine, in general less well known than the statistical uncertainty. (HEP: 

typically >90% of the work)
➢ Systematic uncertainties ≠ mistakes (a bug in your computer code is not a systematic 

uncertainty)

Statistical vs Systematic

backup
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Covariance Matrix

Backup
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Klaus Reygers, Heidelberg “Statistical Methods in Particle Physics”, WS 2017/18

Normal Distribution
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Klaus Reygers, Heidelberg “Statistical Methods in Particle Physics”, WS 2017/18

Poisson Distribution
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Smearing shifts
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Smearing shifts


